Qt Connect Slot By Name

  1. Qt Virtual Slot
  2. Qt Private Slots
  3. Qt Connect Slot By Name Tags
  4. Qt Connect Slot By Name Labels

Qt Connect Slots By Name 18+ New Customers only. Registration required. Free Spins on Book of Dead are subject to change and expire 7 days from activation. 35x wagering requirement before any winnings can be withdrawn. My Problem is that the SIGNAL comes from the Dialog with the name onpushButtonEnterclicked and my SLOT is inside my mainwindow with the name setCurrentIndex. I,ve read the post's: 'How to Connect Signal from MainWindow to Slot in Dialog' and 'Qt connect mainwindow and dialog using signal and slot'.

This is the sequel of my previous article explaining the implementation details of the signals and slots.In the Part 1, we have seenthe general principle and how it works with the old syntax.In this blog post, we will see the implementation details behind thenew function pointerbased syntax in Qt5.

New Syntax in Qt5

The new syntax looks like this:

Why the new syntax?

I already explained the advantages of the new syntax in adedicated blog entry.To summarize, the new syntax allows compile-time checking of the signals and slots. It also allowsautomatic conversion of the arguments if they do not have the same types.As a bonus, it enables the support for lambda expressions.

New overloads

There was only a few changes required to make that possible.
The main idea is to have new overloads to QObject::connect which take the pointersto functions as arguments instead of char*

There are three new static overloads of QObject::connect: (not actual code)

The first one is the one that is much closer to the old syntax: you connect a signal from the senderto a slot in a receiver object.The two other overloads are connecting a signal to a static function or a functor object withouta receiver.

They are very similar and we will only analyze the first one in this article.

Pointer to Member Functions

Before continuing my explanation, I would like to open a parenthesis totalk a bit about pointers to member functions.

Here is a simple sample code that declares a pointer to member function and calls it.

Pointers to member and pointers to member functions are usually part of the subset of C++ that is not much used and thus lesser known.
The good news is that you still do not really need to know much about them to use Qt and its new syntax. All you need to remember is to put the & before the name of the signal in your connect call. But you will not need to cope with the ::*, .* or ->* cryptic operators.

These cryptic operators allow you to declare a pointer to a member or access it.The type of such pointers includes the return type, the class which owns the member, the types of each argumentand the const-ness of the function.

You cannot really convert pointer to member functions to anything and in particular not tovoid* because they have a different sizeof.
If the function varies slightly in signature, you cannot convert from one to the other.For example, even converting from void (MyClass::*)(int) const tovoid (MyClass::*)(int) is not allowed.(You could do it with reinterpret_cast; but that would be an undefined behaviour if you callthem, according to the standard)

Pointer to member functions are not just like normal function pointers.A normal function pointer is just a normal pointer the address where thecode of that function lies.But pointer to member function need to store more information:member functions can be virtual and there is also an offset to apply to thehidden this in case of multiple inheritance.
sizeof of a pointer to a member function can evenvary depending of the class.This is why we need to take special care when manipulating them.

Type Traits: QtPrivate::FunctionPointer

Let me introduce you to the QtPrivate::FunctionPointer type trait.
A trait is basically a helper class that gives meta data about a given type.Another example of trait in Qt isQTypeInfo.

What we will need to know in order to implement the new syntax is information about a function pointer.

The template<typename T> struct FunctionPointer will give us informationabout T via its member.

  • ArgumentCount: An integer representing the number of arguments of the function.
  • Object: Exists only for pointer to member function. It is a typedef to the class of which the function is a member.
  • Arguments: Represents the list of argument. It is a typedef to a meta-programming list.
  • call(T &function, QObject *receiver, void **args): A static function that will call the function, applying the given parameters.

Qt Virtual Slot

Qt still supports C++98 compiler which means we unfortunately cannot require support for variadic templates.Therefore we had to specialize our trait function for each number of arguments.We have four kinds of specializationd: normal function pointer, pointer to member function,pointer to const member function and functors.For each kind, we need to specialize for each number of arguments. We support up to six arguments.We also made a specialization using variadic templateso we support arbitrary number of arguments if the compiler supports variadic templates.

The implementation of FunctionPointer lies inqobjectdefs_impl.h.

QObject::connect

The implementation relies on a lot of template code. I am not going to explain all of it.

Here is the code of the first new overload fromqobject.h:

You notice in the function signature that sender and receiverare not just QObject* as the documentation points out. They are pointers totypename FunctionPointer::Object instead.This uses SFINAEto make this overload only enabled for pointers to member functionsbecause the Object only exists in FunctionPointer ifthe type is a pointer to member function.

We then start with a bunch ofQ_STATIC_ASSERT.They should generate sensible compilation error messages when the user made a mistake.If the user did something wrong, it is important that he/she sees an error hereand not in the soup of template code in the _impl.h files.We want to hide the underlying implementation from the user who should not needto care about it.
That means that if you ever you see a confusing error in the implementation details,it should be considered as a bug that should be reported.

We then allocate a QSlotObject that is going to be passed to connectImpl().The QSlotObject is a wrapper around the slot that will help calling it. It alsoknows the type of the signal arguments so it can do the proper type conversion.
We use List_Left to only pass the same number as argument as the slot, which allows connectinga signal with many arguments to a slot with less arguments.

QObject::connectImpl is the private internal functionthat will perform the connection.It is similar to the original syntax, the difference is that instead of storing amethod index in the QObjectPrivate::Connection structure,we store a pointer to the QSlotObjectBase.

The reason why we pass &slot as a void** is only tobe able to compare it if the type is Qt::UniqueConnection.

We also pass the &signal as a void**.It is a pointer to the member function pointer. (Yes, a pointer to the pointer)

Signal Index

We need to make a relationship between the signal pointer and the signal index.
We use MOC for that. Yes, that means this new syntaxis still using the MOC and that there are no plans to get rid of it :-).

MOC will generate code in qt_static_metacallthat compares the parameter and returns the right index.connectImpl will call the qt_static_metacall function with thepointer to the function pointer.

Once we have the signal index, we can proceed like in the other syntax.

The QSlotObjectBase

QSlotObjectBase is the object passed to connectImplthat represents the slot.

Before showing the real code, this is what QObject::QSlotObjectBasewas in Qt5 alpha:

It is basically an interface that is meant to be re-implemented bytemplate classes implementing the call and comparison of thefunction pointers.

It is re-implemented by one of the QSlotObject, QStaticSlotObject orQFunctorSlotObject template class.

Fake Virtual Table

The problem with that is that each instantiation of those object would need to create a virtual table which contains not only pointer to virtual functionsbut also lot of information we do not need such asRTTI.That would result in lot of superfluous data and relocation in the binaries.

In order to avoid that, QSlotObjectBase was changed not to be a C++ polymorphic class.Virtual functions are emulated by hand.

The m_impl is a (normal) function pointer which performsthe three operations that were previously virtual functions. The 're-implementations'set it to their own implementation in the constructor.

Please do not go in your code and replace all your virtual functions by such ahack because you read here it was good.This is only done in this case because almost every call to connectwould generate a new different type (since the QSlotObject has template parameterswich depend on signature of the signal and the slot).

Protected, Public, or Private Signals.

Signals were protected in Qt4 and before. It was a design choice as signals should be emittedby the object when its change its state. They should not be emitted fromoutside the object and calling a signal on another object is almost always a bad idea.

However, with the new syntax, you need to be able take the addressof the signal from the point you make the connection.The compiler would only let you do that if you have access to that signal.Writing &Counter::valueChanged would generate a compiler errorif the signal was not public.

In Qt 5 we had to change signals from protected to public.This is unfortunate since this mean anyone can emit the signals.We found no way around it. We tried a trick with the emit keyword. We tried returning a special value.But nothing worked.I believe that the advantages of the new syntax overcome the problem that signals are now public.

Sometimes it is even desirable to have the signal private. This is the case for example inQAbstractItemModel, where otherwise, developers tend to emit signalfrom the derived class which is not what the API wants.There used to be a pre-processor trick that made signals privatebut it broke the new connection syntax.
A new hack has been introduced.QPrivateSignal is a dummy (empty) struct declared private in the Q_OBJECTmacro. It can be used as the last parameter of the signal. Because it is private, only the objecthas the right to construct it for calling the signal.MOC will ignore the QPrivateSignal last argument while generating signature information.See qabstractitemmodel.h for an example.

More Template Code

The rest of the code is inqobjectdefs_impl.h andqobject_impl.h.It is mostly standard dull template code.

I will not go into much more details in this article,but I will just go over few items that are worth mentioning.

Labels

Meta-Programming List

As pointed out earlier, FunctionPointer::Arguments is a listof the arguments. The code needs to operate on that list:iterate over each element, take only a part of it or select a given item.

That is why there isQtPrivate::List that can represent a list of types. Some helpers to operate on it areQtPrivate::List_Select andQtPrivate::List_Left, which give the N-th element in the list and a sub-list containingthe N first elements.

The implementation of List is different for compilers that support variadic templates and compilers that do not.

With variadic templates, it is atemplate<typename... T> struct List;. The list of arguments is just encapsulatedin the template parameters.
For example: the type of a list containing the arguments (int, QString, QObject*) would simply be:

Without variadic template, it is a LISP-style list: template<typename Head, typename Tail > struct List;where Tail can be either another List or void for the end of the list.
The same example as before would be:

ApplyReturnValue Trick

In the function FunctionPointer::call, the args[0] is meant to receive the return value of the slot.If the signal returns a value, it is a pointer to an object of the return type ofthe signal, else, it is 0.If the slot returns a value, we need to copy it in arg[0]. If it returns void, we do nothing.

The problem is that it is not syntaxically correct to use thereturn value of a function that returns void.Should I have duplicated the already huge amount of code duplication: once for the voidreturn type and the other for the non-void?No, thanks to the comma operator.

In C++ you can do something like that:

You could have replaced the comma by a semicolon and everything would have been fine.

Where it becomes interesting is when you call it with something that is not void:

There, the comma will actually call an operator that you even can overload.It is what we do inqobjectdefs_impl.h

ApplyReturnValue is just a wrapper around a void*. Then it can be usedin each helper. This is for example the case of a functor without arguments:

This code is inlined, so it will not cost anything at run-time.

Conclusion

This is it for this blog post. There is still a lot to talk about(I have not even mentioned QueuedConnection or thread safety yet), but I hope you found thisinterresting and that you learned here something that might help you as a programmer.

Update:The part 3 is available.

Signals and slots are used for communication between objects. The signals and slots mechanism is a central feature of Qt and probably the part that differs most from the features provided by other frameworks. Signals and slots are made possible by Qt's meta-object system.

Introduction

In GUI programming, when we change one widget, we often want another widget to be notified. More generally, we want objects of any kind to be able to communicate with one another. For example, if a user clicks a Close button, we probably want the window's close() function to be called.

Other toolkits achieve this kind of communication using callbacks. A callback is a pointer to a function, so if you want a processing function to notify you about some event you pass a pointer to another function (the callback) to the processing function. The processing function then calls the callback when appropriate. While successful frameworks using this method do exist, callbacks can be unintuitive and may suffer from problems in ensuring the type-correctness of callback arguments.

Signals and Slots

In Qt, we have an alternative to the callback technique: We use signals and slots. A signal is emitted when a particular event occurs. Qt's widgets have many predefined signals, but we can always subclass widgets to add our own signals to them. A slot is a function that is called in response to a particular signal. Qt's widgets have many pre-defined slots, but it is common practice to subclass widgets and add your own slots so that you can handle the signals that you are interested in.

The signals and slots mechanism is type safe: The signature of a signal must match the signature of the receiving slot. (In fact a slot may have a shorter signature than the signal it receives because it can ignore extra arguments.) Since the signatures are compatible, the compiler can help us detect type mismatches when using the function pointer-based syntax. The string-based SIGNAL and SLOT syntax will detect type mismatches at runtime. Signals and slots are loosely coupled: A class which emits a signal neither knows nor cares which slots receive the signal. Qt's signals and slots mechanism ensures that if you connect a signal to a slot, the slot will be called with the signal's parameters at the right time. Signals and slots can take any number of arguments of any type. They are completely type safe.

All classes that inherit from QObject or one of its subclasses (e.g., QWidget) can contain signals and slots. Signals are emitted by objects when they change their state in a way that may be interesting to other objects. This is all the object does to communicate. It does not know or care whether anything is receiving the signals it emits. This is true information encapsulation, and ensures that the object can be used as a software component.

Slots can be used for receiving signals, but they are also normal member functions. Just as an object does not know if anything receives its signals, a slot does not know if it has any signals connected to it. This ensures that truly independent components can be created with Qt.

You can connect as many signals as you want to a single slot, and a signal can be connected to as many slots as you need. It is even possible to connect a signal directly to another signal. (This will emit the second signal immediately whenever the first is emitted.)

Together, signals and slots make up a powerful component programming mechanism.

Signals

Signals are emitted by an object when its internal state has changed in some way that might be interesting to the object's client or owner. Signals are public access functions and can be emitted from anywhere, but we recommend to only emit them from the class that defines the signal and its subclasses.

When a signal is emitted, the slots connected to it are usually executed immediately, just like a normal function call. When this happens, the signals and slots mechanism is totally independent of any GUI event loop. Execution of the code following the emit statement will occur once all slots have returned. The situation is slightly different when using queued connections; in such a case, the code following the emit keyword will continue immediately, and the slots will be executed later.

If several slots are connected to one signal, the slots will be executed one after the other, in the order they have been connected, when the signal is emitted.

Signals are automatically generated by the moc and must not be implemented in the .cpp file. They can never have return types (i.e. use void).

A note about arguments: Our experience shows that signals and slots are more reusable if they do not use special types. If QScrollBar::valueChanged() were to use a special type such as the hypothetical QScrollBar::Range, it could only be connected to slots designed specifically for QScrollBar. Connecting different input widgets together would be impossible.

Slots

A slot is called when a signal connected to it is emitted. Slots are normal C++ functions and can be called normally; their only special feature is that signals can be connected to them.

Since slots are normal member functions, they follow the normal C++ rules when called directly. However, as slots, they can be invoked by any component, regardless of its access level, via a signal-slot connection. This means that a signal emitted from an instance of an arbitrary class can cause a private slot to be invoked in an instance of an unrelated class.

You can also define slots to be virtual, which we have found quite useful in practice.

Compared to callbacks, signals and slots are slightly slower because of the increased flexibility they provide, although the difference for real applications is insignificant. In general, emitting a signal that is connected to some slots, is approximately ten times slower than calling the receivers directly, with non-virtual function calls. This is the overhead required to locate the connection object, to safely iterate over all connections (i.e. checking that subsequent receivers have not been destroyed during the emission), and to marshall any parameters in a generic fashion. While ten non-virtual function calls may sound like a lot, it's much less overhead than any new or delete operation, for example. As soon as you perform a string, vector or list operation that behind the scene requires new or delete, the signals and slots overhead is only responsible for a very small proportion of the complete function call costs. The same is true whenever you do a system call in a slot; or indirectly call more than ten functions. The simplicity and flexibility of the signals and slots mechanism is well worth the overhead, which your users won't even notice.

Note that other libraries that define variables called signals or slots may cause compiler warnings and errors when compiled alongside a Qt-based application. To solve this problem, #undef the offending preprocessor symbol.

A Small Example

A minimal C++ class declaration might read:

A small QObject-based class might read:

The QObject-based version has the same internal state, and provides public methods to access the state, but in addition it has support for component programming using signals and slots. This class can tell the outside world that its state has changed by emitting a signal, valueChanged(), and it has a slot which other objects can send signals to.

All classes that contain signals or slots must mention Q_OBJECT at the top of their declaration. They must also derive (directly or indirectly) from QObject.

Slots are implemented by the application programmer. Here is a possible implementation of the Counter::setValue() slot:

The emit line emits the signal valueChanged() from the object, with the new value as argument.

In the following code snippet, we create two Counter objects and connect the first object's valueChanged() signal to the second object's setValue() slot using QObject::connect():

Calling a.setValue(12) makes a emit a valueChanged(12) signal, which b will receive in its setValue() slot, i.e. b.setValue(12) is called. Then b emits the same valueChanged() signal, but since no slot has been connected to b's valueChanged() signal, the signal is ignored.

Note that the setValue() function sets the value and emits the signal only if value != m_value. This prevents infinite looping in the case of cyclic connections (e.g., if b.valueChanged() were connected to a.setValue()).

By default, for every connection you make, a signal is emitted; two signals are emitted for duplicate connections. You can break all of these connections with a single disconnect() call. If you pass the Qt::UniqueConnectiontype, the connection will only be made if it is not a duplicate. If there is already a duplicate (exact same signal to the exact same slot on the same objects), the connection will fail and connect will return false.

This example illustrates that objects can work together without needing to know any information about each other. To enable this, the objects only need to be connected together, and this can be achieved with some simple QObject::connect() function calls, or with uic's automatic connections feature.

A Real Example

The following is an example of the header of a simple widget class without member functions. The purpose is to show how you can utilize signals and slots in your own applications.

Qt Connect Slot By Name

LcdNumber inherits QObject, which has most of the signal-slot knowledge, via QFrame and QWidget. It is somewhat similar to the built-in QLCDNumber widget.

The Q_OBJECT macro is expanded by the preprocessor to declare several member functions that are implemented by the moc; if you get compiler errors along the lines of 'undefined reference to vtable for LcdNumber', you have probably forgotten to run the moc or to include the moc output in the link command.

After the class constructor and public members, we declare the class signals. The LcdNumber class emits a signal, overflow(), when it is asked to show an impossible value.

If you don't care about overflow, or you know that overflow cannot occur, you can ignore the overflow() signal, i.e. don't connect it to any slot.

If on the other hand you want to call two different error functions when the number overflows, simply connect the signal to two different slots. Qt will call both (in the order they were connected).

Connect

A slot is a receiving function used to get information about state changes in other widgets. LcdNumber uses it, as the code above indicates, to set the displayed number. Since display() is part of the class's interface with the rest of the program, the slot is public.

Several of the example programs connect the valueChanged() signal of a QScrollBar to the display() slot, so the LCD number continuously shows the value of the scroll bar.

Note that display() is overloaded; Qt will select the appropriate version when you connect a signal to the slot. With callbacks, you'd have to find five different names and keep track of the types yourself.

Signals And Slots With Default Arguments

The signatures of signals and slots may contain arguments, and the arguments can have default values. Consider QObject::destroyed():

When a QObject is deleted, it emits this QObject::destroyed() signal. We want to catch this signal, wherever we might have a dangling reference to the deleted QObject, so we can clean it up. A suitable slot signature might be:

To connect the signal to the slot, we use QObject::connect(). There are several ways to connect signal and slots. The first is to use function pointers:

There are several advantages to using QObject::connect() with function pointers. First, it allows the compiler to check that the signal's arguments are compatible with the slot's arguments. Arguments can also be implicitly converted by the compiler, if needed.

You can also connect to functors or C++11 lambdas:

Qt Connect Slot By Name

In both these cases, we provide this as context in the call to connect(). The context object provides information about in which thread the receiver should be executed. This is important, as providing the context ensures that the receiver is executed in the context thread.

The lambda will be disconnected when the sender or context is destroyed. You should take care that any objects used inside the functor are still alive when the signal is emitted.

The other way to connect a signal to a slot is to use QObject::connect() and the SIGNAL and SLOT macros. The rule about whether to include arguments or not in the SIGNAL() and SLOT() macros, if the arguments have default values, is that the signature passed to the SIGNAL() macro must not have fewer arguments than the signature passed to the SLOT() macro.

All of these would work:

But this one won't work:

...because the slot will be expecting a QObject that the signal will not send. This connection will report a runtime error.

Note that signal and slot arguments are not checked by the compiler when using this QObject::connect() overload.

Advanced Signals and Slots Usage

For cases where you may require information on the sender of the signal, Qt provides the QObject::sender() function, which returns a pointer to the object that sent the signal.

Lambda expressions are a convenient way to pass custom arguments to a slot:

Using Qt with 3rd Party Signals and Slots

It is possible to use Qt with a 3rd party signal/slot mechanism. You can even use both mechanisms in the same project. Just add the following line to your qmake project (.pro) file.

Qt Private Slots

It tells Qt not to define the moc keywords signals, slots, and emit, because these names will be used by a 3rd party library, e.g. Boost. Then to continue using Qt signals and slots with the no_keywords flag, simply replace all uses of the Qt moc keywords in your sources with the corresponding Qt macros Q_SIGNALS (or Q_SIGNAL), Q_SLOTS (or Q_SLOT), and Q_EMIT.

Qt Connect Slot By Name Tags

See also QLCDNumber, QObject::connect(), Digital Clock Example, Tetrix Example, Meta-Object System, and Qt's Property System.

Qt Connect Slot By Name Labels

© 2021 The Qt Company Ltd. Documentation contributions included herein are the copyrights of their respective owners. The documentation provided herein is licensed under the terms of the GNU Free Documentation License version 1.3 as published by the Free Software Foundation. Qt and respective logos are trademarks of The Qt Company Ltd. in Finland and/or other countries worldwide. All other trademarks are property of their respective owners.